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Administration

● Questions on the assignment at the end.
● There were some questions about the memory 

model from last week.
● Accordingly, there will be a file posted to the 

lectures page that will go through the example line 
by line.

● When it is posted, will be posted on the 
Announcements.
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Assignment 1

● Find_factor()
● Between 0 and 100 is exclusive, means 1<=x<=99
● We are counting non-prime factors, so 4 is an 

acceptable answer.
● 1 is not considered a factor, unless the input is 1.

● Find intercept()
● Don't need to worry about lines that don't have 

intercepts.

● In general, don't need to worry about inputs for 
which there is no answer.
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What if we don't want numbers?

● So far we've seen ints, reals and booleans
● Allow for number manipulation and logic 

manipulation
● But what if we want to use text?
● Then we need to use a new type – strings.
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Strings

● Sequences of characters.
● Two types str and unicode.

● We'll use str in this course.
● It contains the roman alphabet, numbers a few 

symbols.
● Unicode is larger, contains more accented letters, 

Chinese characters, and more.

● Strings are denoted by single or double quotes.
● Quote type must match!
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String operations.

● Strings can be 'added'.

● We call this concatenation.
● “str” + “ing” results in “string”.

● Can also be multiplied, sort of.

● You can't multiply a string with itself, but the 
multiplication operator functions as a copy.

● So “copy”*3 results in “copycopycopy”.
● Can also compare strings using relational operators.

● Can check if substrings are in a string using in.

● Long strings that span multiple lines can be made using '''.



June 2 2011

Escape Characters

● Denoted by a backslash, they indicate to python 
that the next character is a special character.
● \n - a new line
● \' - a single quote
● \” - a double quote
● \\ - a backslash
● \t - a tab.

● Aside len(string) will return an int that is 
the number of characters in the string.
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Converting types to strings.

● If we have a variable that is not a string and we 
want to add it to a string, we need to convert it.

● We use str(x) to convert x to a string.
● Print will display the variable, and can display 

mixed types.
● They must be separated with a comma.
● print “string”, x, “ “, real_num

● Can be awkward.
● print “Person“, name, “has height”, 
height, “age“, age, “weight“, weight
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Can use string formatting instead.

● Can use special characters to tell python to 
insert a type into a string.

● print “My age is %d.” % age

● The %d tells python to take age, and format it 
as an integer.

● %s says to take a value and format it as a 
string.

● %f says to take a value and format it as a float.
● %.2f says to pad the float to 2 decimal places.
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Multiple variables.

● What if we want multiple variables in our string?
● print “Person“, name, “has height”, \  
  height, “age“, age, “weight“, weight

● We put them in parentheses separated by 
commas.
● print “Person %s has weight %.2f \

   and age %d and height %d.“ \

   % (name, weight, age, height)
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User input.

● Here we mean the user as the person who is 
using a program while it is running.

● Thus far, the only way we've had of giving input 
to a program is to hardcode it in the code.

● Inefficient and not user-friendly.
● Python allows us to ask for user input using 

raw_input().
● Returns a string!

● So it may need to be converted.
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Break, the first
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Modules.

● Sometimes we want to use other people's code.
● Or make our own code available for use.
● It's convenient if we can bundle up related 

functions in one file.
● Modules allow us to do this.
● A Module is a group of related functions and 

variables.
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Using modules.

● To use a module, one needs to import it.
● Importing a module causes python to run each 

line of code in the module.
● It it is just function definitions this doesn't cause 

much trouble.
● But it can be annoying if there is code that you don't 

care about in the module.

● To use a function in a module one uses.

    module_name.function_name()
● We can also run a module. Then we just use 
function_name()
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__name__

● In addition to variables that are defined in the 
module, each module has a variable that is 
called __name__.

● If we import a module called module_m, then
module_m.__name__ == “module_m”

● But if we run a module, then
● __name__ == “__main__”

● Recall that if we are running a module, we don't 
need the module name as a prefix.
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Another way to import things.

● from module_name import fn_name1(), fn_name2()

● Will import fn_name1 and fn_name 2
● Can be referred to by just fn_name1()

● Can also use * as a wildcard to import all the 
functions.
● from module_name import *

● What if two modules have a function with the 
same name?

● The most recent one stays.
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Methods.

● We've seen that modules can have their own 
functions.

● A similar thing is true of values.
● Values contain ways that you can modify them. 

We call these methods.
● These are called by value.fn_name()
● Or, if we've assigned a value to a variable we 

can use variable_name.fn_name()
● We can call help(type) to figure out what 

methods a type has available to it.
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String methods.

● Can find them by using help(str).
● Useful ones include:
● s.replace(old, new) -  return a new string 

that is a copy of s with all instances of old 
replaced by new.

● string.count(substr) – return the number 
of instances of substr in the string.

● string.lower() - shift to lower case letters.

● string.upper() - shift to capitalised letters.
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Getting method information

● Most direct way is to use help().
● But help isn't searchable. Can use dir() to 

browse.
● Sometimes you know what you want, and you think 

it might already exist.

● An alternative is to check the standard library:
● http://docs.python.org/library/
● Being able to browse this is useful skill.

http://docs.python.org/library/
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Remember!

● Functions belong to modules.
● Methods belong to objects.

● All of the basic types in python are objects.
● We will learn how to make our own later.
● This is covered in greater detail in 148.

● len(str) is a function
● str.lower() is a method.
● Subtle but important distinction.



June 2 2011

Break, the second.
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Repetition

● Often times in programs we want to do the 
same thing over and over again.

● For example, we may want to add a number to 
a variable until it reaches some number.

● Or we may want to execute a block of code until 
some condition is true.

● Ages ago, this was done with a goto statement.
● This lead to unreadable 'spaghetti' code.
● Python has no goto statement.
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The while loop

● Instead Python uses loops.
● We will cover the for loop next week.

● The while loop has the form:
while condition:

    block

● The condition is checked first. If it evaluates to 
True, the block executes, otherwise the block is 
skipped, and the next line of code is executed. 
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Why loops?

● While loops can be used if:

● You want to repeat an action indefinitely

● You want to repeat an action until a condition is met.

● You want to repeat an action a fixed number of 
times.
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Assignment Questions
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