
CSC 108H: Introduction to Computer
Programming

Summer 2011

Marek Janicki

June 2 2011

Administration

● Questions on the assignment at the end.
● There were some questions about the memory

model from last week.
● Accordingly, there will be a file posted to the

lectures page that will go through the example line
by line.

● When it is posted, will be posted on the
Announcements.

June 2 2011

Assignment 1

● Find_factor()
● Between 0 and 100 is exclusive, means 1<=x<=99
● We are counting non-prime factors, so 4 is an

acceptable answer.
● 1 is not considered a factor, unless the input is 1.

● Find intercept()
● Don't need to worry about lines that don't have

intercepts.

● In general, don't need to worry about inputs for
which there is no answer.

June 2 2011

What if we don't want numbers?

● So far we've seen ints, reals and booleans
● Allow for number manipulation and logic

manipulation
● But what if we want to use text?
● Then we need to use a new type – strings.

June 2 2011

Strings

● Sequences of characters.
● Two types str and unicode.

● We'll use str in this course.
● It contains the roman alphabet, numbers a few

symbols.
● Unicode is larger, contains more accented letters,

Chinese characters, and more.

● Strings are denoted by single or double quotes.
● Quote type must match!

June 2 2011

String operations.

● Strings can be 'added'.

● We call this concatenation.
● “str” + “ing” results in “string”.

● Can also be multiplied, sort of.

● You can't multiply a string with itself, but the
multiplication operator functions as a copy.

● So “copy”*3 results in “copycopycopy”.
● Can also compare strings using relational operators.

● Can check if substrings are in a string using in.

● Long strings that span multiple lines can be made using '''.

June 2 2011

Escape Characters

● Denoted by a backslash, they indicate to python
that the next character is a special character.
● \n - a new line
● \' - a single quote
● \” - a double quote
● \\ - a backslash
● \t - a tab.

● Aside len(string) will return an int that is
the number of characters in the string.

June 2 2011

Converting types to strings.

● If we have a variable that is not a string and we
want to add it to a string, we need to convert it.

● We use str(x) to convert x to a string.
● Print will display the variable, and can display

mixed types.
● They must be separated with a comma.
● print “string”, x, “ “, real_num

● Can be awkward.
● print “Person“, name, “has height”,
height, “age“, age, “weight“, weight

June 2 2011

Can use string formatting instead.

● Can use special characters to tell python to
insert a type into a string.

● print “My age is %d.” % age

● The %d tells python to take age, and format it
as an integer.

● %s says to take a value and format it as a
string.

● %f says to take a value and format it as a float.
● %.2f says to pad the float to 2 decimal places.

June 2 2011

Multiple variables.

● What if we want multiple variables in our string?
● print “Person“, name, “has height”, \
 height, “age“, age, “weight“, weight

● We put them in parentheses separated by
commas.
● print “Person %s has weight %.2f \

 and age %d and height %d.“ \

 % (name, weight, age, height)

June 2 2011

User input.

● Here we mean the user as the person who is
using a program while it is running.

● Thus far, the only way we've had of giving input
to a program is to hardcode it in the code.

● Inefficient and not user-friendly.
● Python allows us to ask for user input using

raw_input().
● Returns a string!

● So it may need to be converted.

June 2 2011

Break, the first

June 2 2011

Modules.

● Sometimes we want to use other people's code.
● Or make our own code available for use.
● It's convenient if we can bundle up related

functions in one file.
● Modules allow us to do this.
● A Module is a group of related functions and

variables.

June 2 2011

Using modules.

● To use a module, one needs to import it.
● Importing a module causes python to run each

line of code in the module.
● It it is just function definitions this doesn't cause

much trouble.
● But it can be annoying if there is code that you don't

care about in the module.

● To use a function in a module one uses.

 module_name.function_name()
● We can also run a module. Then we just use
function_name()

June 2 2011

__name__

● In addition to variables that are defined in the
module, each module has a variable that is
called __name__.

● If we import a module called module_m, then
module_m.__name__ == “module_m”

● But if we run a module, then
● __name__ == “__main__”

● Recall that if we are running a module, we don't
need the module name as a prefix.

June 2 2011

Another way to import things.

● from module_name import fn_name1(), fn_name2()

● Will import fn_name1 and fn_name 2
● Can be referred to by just fn_name1()

● Can also use * as a wildcard to import all the
functions.
● from module_name import *

● What if two modules have a function with the
same name?

● The most recent one stays.

June 2 2011

Methods.

● We've seen that modules can have their own
functions.

● A similar thing is true of values.
● Values contain ways that you can modify them.

We call these methods.
● These are called by value.fn_name()
● Or, if we've assigned a value to a variable we

can use variable_name.fn_name()
● We can call help(type) to figure out what

methods a type has available to it.

June 2 2011

String methods.

● Can find them by using help(str).
● Useful ones include:
● s.replace(old, new) - return a new string

that is a copy of s with all instances of old
replaced by new.

● string.count(substr) – return the number
of instances of substr in the string.

● string.lower() - shift to lower case letters.

● string.upper() - shift to capitalised letters.

June 2 2011

Getting method information

● Most direct way is to use help().
● But help isn't searchable. Can use dir() to

browse.
● Sometimes you know what you want, and you think

it might already exist.

● An alternative is to check the standard library:
● http://docs.python.org/library/
● Being able to browse this is useful skill.

http://docs.python.org/library/

June 2 2011

Remember!

● Functions belong to modules.
● Methods belong to objects.

● All of the basic types in python are objects.
● We will learn how to make our own later.
● This is covered in greater detail in 148.

● len(str) is a function
● str.lower() is a method.
● Subtle but important distinction.

June 2 2011

Break, the second.

June 2 2011

Repetition

● Often times in programs we want to do the
same thing over and over again.

● For example, we may want to add a number to
a variable until it reaches some number.

● Or we may want to execute a block of code until
some condition is true.

● Ages ago, this was done with a goto statement.
● This lead to unreadable 'spaghetti' code.
● Python has no goto statement.

June 2 2011

The while loop

● Instead Python uses loops.
● We will cover the for loop next week.

● The while loop has the form:
while condition:

 block

● The condition is checked first. If it evaluates to
True, the block executes, otherwise the block is
skipped, and the next line of code is executed.

June 2 2011

Why loops?

● While loops can be used if:

● You want to repeat an action indefinitely

● You want to repeat an action until a condition is met.

● You want to repeat an action a fixed number of
times.

June 2 2011

Assignment Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

